References

[Altamimi2002]

Altamimi, Z., Sillard, P., and Boucher, C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 2002. doi:10.1029/2001JB000561.

[Bessel1825]

Bessel, F. W. The calculation of longitude and latitude from geodesic measurements. Astronomische Nachrichten, 4(86):241–254, 1825. arXiv:0908.1824.

[CalabrettaGreisen2002]

Calabretta, M. R. and Greisen, E. W. Representations of celestial coordinates in FITS. Astronomy & Astrophysics, 395(3):1077–1122, 2002. doi:10.1051/0004-6361:20021327.

[ChanONeil1975]

Chan, F. K. and O'Neill, E. M. Feasibility study of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 2-75 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1975. URL: https://archive.org/details/ADA010232.

[Danielsen1989]

Danielsen, J. The area under the geodesic. Survey Review, 30(232):61–66, 1989. doi:10.1179/sre.1989.30.232.61.

[Deakin2004]

Deakin, R. E. The standard and abridged Molodensky coordinate transformation formulae. Technical Report, Department of Mathematical and Geospatial Sciences, RMIT University, Melborne, Australia, 2004. URL: http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf.

[EberHewitt1979]

Eber, L. E. and Hewitt, R. P. Conversion algorithms for the CalCOFI station grid. California Cooperative Oceanic Fisheries Investigations Reports, 20:135–137, 1979. URL: http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf.

[Engsager2007]

Engsager, K. E. and Poder, K. A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In Proc. XXIII Intl. Cartographic Conf. (ICC2007), Moscow, 2.1.2. August 2007.

[Evenden1995]

Evenden, G. I. Cartographic Projection Procedures for the UNIX Environment — A User's Manual. 1995. URL: https://pubs.usgs.gov/of/1990/of90-284/ofr90-284.pdf.

[Evenden2005]

Evenden, G. I. libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft). 2005. URL: https://github.com/OSGeo/PROJ/blob/master/docs/old/libproj.pdf.

[EversKnudsen2017]

Evers, K. and Knudsen, T. Transformation pipelines for PROJ.4. In FIG Working Week 2017 Proceedings. Helsinki, Finland, 2017. URL: http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf.

[Goode1919]

Goode, J. P. Studies in projections: adapting the homolographic projection to the portrayal of the earth's entire surface. Bul. Geog. SOC.Phila., XWIJ(3):103–113, 1919.

[Goode1925]

Goode, J. P. The homolosine projection: a new device for portraying the earth's surface entire. Annals of the Association of American Geographers, 3(15):119–125, 1925. doi:10.1080/00045602509356949.

[Helmert1880]

Helmert, F. R. Mathematical and Physical Theories of Higher Geodesy. Volume 1. Teubner, Leipzig, 1880. doi:10.5281/zenodo.32050.

[Hensley2002]

Hensley, S., Chapin, E., Freedman, A., and Michel, T. Improved processing of AIRSAR data based on the GeoSAR processor. In AIRSAR Earth Science and Application Workshop. Pasadena, California, 2002. Jet Propulsion Laboratory. URL: https://airsar.jpl.nasa.gov/documents/workshop2002/papers/T3.pdf.

[Hakli2016]

Häkli, P., Lidberg, M., Jivall, L., Nørbech, T., Tangen, O., Weber, M., Pihlak, P., Aleksejenko, I., and Paršeliunas, E. The NKG2008 GPS campaign – final transformation results and a new common Nordic reference frame. Journal of Geodetic Science, 6(1):1–33, 2016. doi:10.1515/jogs-2016-0001.

[NTF_88]

IGN. Grille de parametres de transformation de coordonnees - GR3DF97A - notice d'utilisation. Technical Report, Service de Geodesie et Nivellement, Institut Geographique National, 1997. URL: https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_88.pdf.

[IOGP2018]

IOGP. Geomatics guidance note 7, part 2: coordinate conversions & transformations including formulas. IOGP Publication 373-7-2, International Association For Oil And Gas Producers, 2018. URL: https://www.iogp.org/bookstore/product/coordinate-conversions-and-transformation-including-formulas/.

[IOGP2019]

IOGP. Geomatics guidance note 7, part 2: coordinate conversions & transformations including formulas. IOGP Publication 373-7-2, International Association For Oil And Gas Producers, 2019. URL: https://www.iogp.org/wp-content/uploads/2019/09/373-07-02.pdf.

[ISO19111]

ISO. Geographic information – Referencing by coordinates. Standard, International Organization for Standardization, Geneva, CH, January 2019. URL: http://docs.opengeospatial.org/as/18-005r5/18-005r5.html.

[Jenny2015]

Jenny, B., Šavrič, B., and Patterson, T. A compromise aspect-adaptive cylindrical projection for world maps. International Journal of Geographical Information Science, 29(6):935–952, 2015. URL: http://www.cartography.oregonstate.edu/pdf/2015_Jenny_etal_ACompromiseAspect-adaptiveCylindricalProjectionForWorldMaps.pdf, doi:10.1080/13658816.2014.997734.

[JimenezShaw2023]

Jimenez Shaw, J., Hernando, J., and Strecha, C. Site calibration with proj and wkt2. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W7-2023:75–81, 2023. URL: https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/75/2023/, doi:10.5194/isprs-archives-XLVIII-4-W7-2023-75-2023.

[Karney2011]

Karney, C. F. F. Geodesics on an ellipsoid of revolution. ArXiv e-prints, 2011. arXiv:1102.1215.

[Karney2011tm]

Karney, C. F. F. Transverse Mercator with an accuracy of a few nanometers. J. Geod., 85(8):475–485, August 2011. arXiv:1002.1417, doi:10.1007/s00190-011-0445-3.

[Karney2013]

Karney, C. F. F. Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, 2013. doi:10.1007/s00190-012-0578-z.

[Komsta2016]

Komsta, Ł. ATPOL geobotanical grid revisited – a proposal of coordinate conversion algorithms. Annales UMCS Sectio E Agricultura, 71(1):31–37, 2016.

[Krueger1912]

Krüger, J. H. L. Konforme Abbildung des Erdellipsoids in der Ebene. New Series 52, Royal Prussian Geodetic Institute, Potsdam, 1912. doi:10.2312/GFZ.b103-krueger28.

[LambersKolb2012]

Lambers, M. and Kolb, A. Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. In Bregler, C., Sander, P., and Wimmer, M., editors, Pacific Graphics Short Papers. The Eurographics Association, 2012. doi:10.2312/PE/PG/PG2012short/005-010.

[ONeilLaubscher1976]

O'Neill, E. M. and Laubscher, R. E. Extended studies of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 3-76 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1976. URL: https://archive.org/details/DTIC_ADA026294.

[Patterson2014]

Patterson, T., Šavrič, B., and Jenny, B. Introducing the Patterson cylindrical projection. Cartographic Perspectives, 2014. doi:10.14714/CP78.1270.

[Poder1998]

Poder, K. and Engsager, K. Some conformal mappings and transformations for geodesy and topographic cartography. National Survey and Cadastre Publications, National Survey and Cadastre, Copenhagen, Denmark, 1998.

[Rittri2012]

Rittri, M. New omerc approximations of Denmark System 34. e-mail, 2012. URL: https://lists.osgeo.org/pipermail/proj/2012-June/005926.html.

[Ruffhead2016]

Ruffhead, A. C. Introduction to multiple regression equations in datum transformations and their reversibility. Survey Review, 50(358):82–90, 2016. doi:10.1080/00396265.2016.1244143.

[Snyder1987]

Snyder, J. P. Map projections — A working manual. Professional Paper 1395, U.S. Geological Survey, 1987. doi:10.3133/pp1395.

[Snyder1988]

Snyder, J. P. New equal-area map projections for noncircular regions. The American Cartographer, 15(4):341–356, 1988. doi:10.1559/152304088783886784.

[Snyder1992]

Snyder, J. P. An equal-area map projection for polyhedral globes. Cartographica, 29(1):10–21, 1992. doi:10.3138/27H7-8K88-4882-1752.

[Snyder1993]

Snyder, J. P. Flattening the Earth. University of Chicago Press, 1993.

[Steers1970]

Steers, J. A. An introduction to the study of map projections. University of London Press, 15th edition, 1970.

[Tobler2018]

Tobler, W. A new companion for Mercator. Cartography and Geographic Information Science, 45(3):284–285, 2018. doi:10.1080/15230406.2017.1308837.

[Verey2017]

Verey, M. Theoretical analysis and practical consequences of adopting a model ATPOL grid as a conical projection defining the conversion of plane coordinates to the WGS 84 ellipsoid. Fragmenta Floristica et Geobotanica Polonica, 24(2):469–488, 2017. URL: http://bomax.botany.pl/pubs-new/#article-4279.

[Vincenty1975]

Vincenty, T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176):88–93, 1975. doi:10.1179/sre.1975.23.176.88.

[WeberMoore2013]

Weber, E. D. and Moore, T. J. Corrected conversion algorithms for the CalCOFI station grid and their implementation in several computer languages. California Cooperative Oceanic Fisheries Investigations Reports, 54:1–10, 2013. URL: http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf.

[Zajac1978]

Zajaç, A. Atlas of distribution of vascular plants in Poland (ATPOL). Taxon, 27(5/6):481–484, 1978. doi:10.2307/1219899.

[Savric2015]

Šavrič, B., Patterson, T., and Jenny, B. The Natural Earth II world map projection. International Journal of Cartography, 1(2):123–133, 2015. URL: https://www.researchgate.net/publication/290447301_The_Natural_Earth_II_world_map_projection, doi:10.1080/23729333.2015.1093312.

[Savric2018]

Šavrič, B., Patterson, T., and Jenny, B. The Equal Earth map projection. International Journal of Geographical Information Science, 33(3):454–465, 2018. URL: https://www.researchgate.net/publication/326879978_The_Equal_Earth_map_projection, doi:10.1080/13658816.2018.1504949.