[AltamimiEtAl2002]Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561.
[Bessel1825]F. W. Bessel, 1825, The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), translated by C. F. F. Karney and R. E. Deakin.
[CalabrettaGreisen2002]M. Calabretta and E. Greisen, 2002, “Representations of celestial coordinates in FITS”. Astronomy & Astrophysics 395, 3, 1077–1122.
[ChanONeil1975]F. Chan and E. M. O’Neill, 1975, “Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base”, Tech. Rep. EPRF 2-75 (CSC), Environmental Prediction Research Facility.
[Danielsen1989]J. Danielsen, 1989, The area under the geodesic, Survey Review 30(232), 61–66.
[Deakin2004]R.E. Deakin, 2004, The Standard and Abridged Molodensky Coordinate Transformation Formulae.
[EberHewitt1979]L. E. Eber and R.P. Hewitt, 1979, Conversion algorithms for the CalCOFI station grid, California Cooperative Oceanic Fisheries Investigations Reports 20:135-137.
[Evenden1995]G. I. Evenden, 1995, Cartograpic Projection Procedures for the UNIX Environment - A User’s Manual.
[Evenden2005]G. I. Evenden, 2005, libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft).
[EversKnudsen2017]K. Evers and T. Knudsen, 2017, Transformation pipelines for PROJ.4, FIG Working Week 2017 Proceedings.
[GeodesicBib]A geodesic bibliography.
[GeodesicWiki]The wikipedia page, Geodesics on an ellipsoid.
[Häkli2016]P. Häkli, M. Lidberg, L. Jivall, et al, 2016, The NKG2008 GPS Campaign - final transformation results and a new common Nordic reference frame, Journal of Geodetic Science, 6(1).
[Helmert1880]F. R. Helmert, 1880, Mathematical and Physical Theories of Higher Geodesy, Vol 1, (Teubner, Leipzig), Chaps. 5–7.
[Karney2011]C. F. F. Karney, 2011, Geodesics on an ellipsoid of revolution; errata.
[Karney2013]C. F. F. Karney, 2013, Algorithms for geodesics, J. Geodesy 87(1) 43–55; addenda.
[Komsta2016]L. Komsta, 2016, ATPOL geobotanical grid revisited - a proposal of coordinate conversion algorithms, Annales UMCS Sectio E Agricultura 71(1), 31–37.
[LambersKolb2012]M. Lambers and A. Kolb, 2012, “Ellipsoidal Cube Maps for Accurate Rendering of Planetary-Scale Terrain Data”, Proc. Pacific Graphics (Short Papers).
[ONeilLaubscher1976]E. M. O’Neill and R. E. Laubscher, 1976, “Extended Studies of a Quadrilateralized Spherical Cube Earth Data Base”, Tech. Rep. NEPRF 3-76 (CSC), Naval Environmental Prediction Research Facility.
[Snyder1987]J. P. Snyder, 1987, Map Projections - A Working Manual. U.S. Geological Survey professional paper 1395.
[Snyder1993]J. P. Snyder, 1993, Flattening the Earth, Chicago and London, The University of Chicago press.
[Steers1970]J. A. Steers, 1970, An introduction to the study of map projections (15th ed.), London Univ. Press, p. 229.
[Verey2017]M. Verey, 2017, Theoretical analysis and practical consequences of adopting an ATPOL grid model as a conical projection, defining the conversion of plane coordinates to the WGS-84 ellipsoid, Fragmenta Floristica et Geobotanica Polonica (preprint submitted).
[Vincenty1975]T. Vincenty, 1975, Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations, Survey Review 23(176), 88–93.
[WeberMoore2013]E. D. Weber and T.J. Moore, 2013, Corrected Conversion Algorithms For The CalCOFI Station Grid And Their Implementation In Several Computer Languages, California Cooperative Oceanic Fisheries Investigations Reports 54.
[Zajac1978]A. Zajac, 1978, “Atlas of distribution of vascular plants in Poland (ATPOL)”, Taxon 27(5/6), 481–484.